I am a 4th-year PhD student in Computer Science at UCLA advised by Prof. Kai-Wei Chang, working in UCLANLP lab. I was awarded Amazon PhD Fellowship in 2023. I previously interned at AI2 Mosaic Team in Summer 2023, mentored by Bill Yuchen Lin and Yejin Choi; Amazon Alexa AI in Summer 2022, mentored by Feng Gao and Govind Thattai.

I study Natural Language Processing (NLP) and intersection of NLP and Computer Vision (CV). My research interest is building generalizable and inclusive language processing models that can be applied across applications and regions.

I completed my bachelor's at Peking University, where I worked with Prof. Xiaojun Wan and Prof. Baobao Chang.

Publications

Zilong Wang, Yuedong Cui, Li Zhong, Zimin Zhang, Da Yin, Bill Yuchen Lin, Jingbo Shang
Arxiv Preprint
[ paper | code ]
Shayne Longpre, Robert Mahari, Ariel Lee, Campbell Lund, Hamidah Oderinwale, William Brannon, Nayan Saxena, Naana Obeng-Marnu, Tobin South, Cole Hunter, Kevin Klyman, Christopher Klamm, Hailey Schoelkopf, Nikhil Singh, Manuel Cherep, Ahmad Anis, An Dinh, Caroline Chitongo, Da Yin, Damien Sileo, Deividas Mataciunas, Diganta Misra, Emad Alghamdi, Enrico Shippole, Jianguo Zhang, Joanna Materzynska, Kun Qian, Kush Tiwary, Lester Miranda, Manan Dey, Minnie Liang, Mohammed Hamdy, Niklas Muennighoff, Seonghyeon Ye, Seungone Kim, Shrestha Mohanty, Vipul Gupta, Vivek Sharma, Vu Minh Chien, Xuhui Zhou, Yizhi Li, Caiming Xiong, Luis Villa, Stella Biderman, Hanlin Li, Daphne Ippolito, Sara Hooker, Jad Kabbara, Sandy Pentland
Arxiv Preprint
Featured by New York Times
[ paper | code | Project Page ]
Da Yin, Faeze Brahman, Abhilasha Ravichander, Khyathi Chandu, Kai-Wei Chang, Yejin Choi, Bill Yuchen Lin
ACL 2024, Presented at LLM Agent @ ICLR 2024
Featured by Marktechpost
[ paper | code GitHub Repo stars | Project Page | Data & Models | Twitter ]
Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, Bill Yuchen Lin
ACL 2024
[ paper | code | Twitter ]
Di Wu, Da Yin, Kai-Wei Chang
ACL 2024 Findings
[ paper | code ]
Da Yin*, Xiao Liu*, Fan Yin*, Ming Zhong*, Hritik Bansal, Jiawei Han, Kai-Wei Chang
(Equal Contribution)
EMNLP 2023
[ paper | code GitHub Repo stars | Project Page | Twitter ]
Stanley Lim, Da Yin, Nanyun Peng
Pan-DL workshop @ EMNLP 2023 (Pattern-based Approaches to NLP in the Age of Deep Learning)
🏆 Best Paper Award
[ paper ]
Xiao Liu, Da Yin, Chen Zhang, Yansong Feng, Dongyan Zhao
ACL 2023 Findings
[ paper | code ]
Da Yin, Feng Gao, Govind Thattai, Michael Johnston, Kai-Wei Chang
CVPR 2023
[ paper | code ]
Da Yin, Hritik Bansal, Masoud Monajatipoor, Liunian Harold Li, Kai-Wei Chang
EMNLP 2022 (Oral, 175/4100≈4.3%)
[ paper | code ]
Hritik Bansal*, Da Yin*, Masoud Monajatipoor, Kai-Wei Chang
(Equal Contribution)
EMNLP 2022 (Oral, 175/4100≈4.3%)
[ paper | code ]
Ming Zhong, Yang Liu, Da Yin, Yuning Mao, Yizhu Jiao, Pengfei Liu, Chenguang Zhu, Heng Ji, Jiawei Han
EMNLP 2022 (Oral, 175/4100≈4.3%)
[ paper | code GitHub Repo stars]
Xiao Liu, Da Yin, Yansong Feng, Dongyan Zhao
ACL 2022
[ paper | code ]
Da Yin, Li Dong, Hao Cheng, Xiaodong Liu, Kai-Wei Chang, Furu Wei, Jianfeng Gao
Presented at Spa-NLP workshop @ ACL 2022 (Semiparametric Methods in NLP)
[ paper ]
Da Yin, Liunian Harold Li, Ziniu Hu, Nanyun Peng, Kai-Wei Chang
EMNLP 2021 (Oral, 315/3600≈8.8%)
[ paper | code | Project Page | Slides ]
Xiao Liu*, Da Yin*, Yansong Feng, Yuting Wu, Dongyan Zhao
(Equal Contribution)
NAACL 2021 (Oral)
[ paper | code ]
Ming Zhong*, Da Yin*, Tao Yu, Ahmad Zaidi, Mutethia Mutuma, Rahul Jha, Ahmed Hassan Awadallah, Asli Celikyilmaz, Yang Liu, Xipeng Qiu, Dragomir Radev
(Equal Contribution)
NAACL 2021 (Oral)
[ paper | code GitHub Repo stars]
Da Yin, Tao Meng, Kai-Wei Chang
ACL 2020
[ paper | code ]
Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang
ACL 2020
[ paper | code ]
Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang
Arxiv Preprint
[ paper | code GitHub Repo stars]
Da Yin*, Xiao Liu*, Xiaojun Wan
(Equal Contribution)
CIKM 2019
[ paper ]
Da Yin, Xiao Liu, Xiuyu Wu, Baobao Chang
WASSA workshop @ NAACL 2019 (Computational Approaches to Subjectivity, Sentiment and Social Media Analysis)
[ paper ]